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1. Introduction

This report explores the work by Auer and Ortner (A new PAC bound
for intersection-closed concept classes) to address the question of how many
labeled examples are needed for a successful model in the PAC learning
framework (success being measured by the ε− δ metric of PAC)
The following results are known :

• Ehrenfeucht et al. (1989) : Every PAC algorithm needs Ω(1
ε
(d+log(1

δ
)))

• Blumer et al. (1989) : Every consistent algorithm needs no more than
Ø(1

ε
(d log(1

ε
)) + log(1

δ
)) labeled examples.

• Auer and Ortner (2007) : This upper bound is tight for some consistent
algorithms

In this paper : new PAC bounds for arbitrary intersection closed concept
classes of Ø(1

ε
(d log d + log 1

δ
)) with the closure algorithm. For the proofs,

please refer to the original paper.

2. Definitions

2.1. Concept Class

A concept class over a (possibly infinite) set X is a subset C ⊆ 2X . For
Y ⊆ X we set C ∩ Y := {C ∩ Y |C ∈ C}. The VC-dimension of a concept
class C ⊆ 2X is the cardinality. of a largest Y ⊆ X for which C ∩ Y = 2Y .

2.2. Intersection Closed Concept Class

A concept class C ⊆ 2X is intersection-closed if for all C1, C2 ∈ C the
intersection C1 ∩ C2 is in C as well.
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2.3. Closure

For any set Y ⊆ X and any concept class C ⊆ 2X we define the closure
of Y (with respect to C) as the intersection of all concepts in C that contain
Y , i.e. closC(Y ) := ∩

Y⊆C∈CC. there is no concept containing Y , then
the closure is by definition of the nullary intersection the set X itself, so
that Y ⊆ clos(Y ) holds in general. The following proposition provides an
alternative definition of intersection-closed concept classes for finite X.

Proposition : A concept class C ⊆ 2X over finite X is intersection-closed
if and only if for Y ⊆ C ∈ C one always has clos(Y ) ∈ C.

Proposition : If C is intersection closed and V C(C) = d , then V C(C’) =
d. Here C’ is the concept class of all intersections of concepts in C.

A spanning set of Y (with respect to an intersection-closed concept class
C ⊆ 2X) is any set S ⊆ Y such that closC(S) = closC(Y ). A spanning set S
of Y is called minimal if no subset of S is a spanning set of Y . Finally, let
spanC(Y ) denote the set of all minimal spanning sets of Y . Again we will
often drop the index, if no ambiguity can arise. Note that if Y is finite, then
span(Y ) = φ.

Theorem : Let C ⊆ 2X be an intersection closed class of VC dimension
d. Let Y ⊆ X be finite and contained in some concept of C. Then all minimal
spans of Y have size atmost d.

Corollary : Let C ⊆ 2X be an intersection closed class of VC dimension
d. Then all minimal spans of any finite Y ⊆ X have size at most d+ 1.

Sauer Shelah Lemma(1972):

|C| ≤
(
|X|
≤ d

)
=

d∑
i=0

(
X

i

)

3. Central Theorem of the Paper

Theorem : Let C ⊆ 2X be a well-behaved. intersection closed con-
cept class of VC dimension d ≥ 10. Then C is PAC learnable from m =

2



max{16
ε
d log d, 6

ε
log 7

δ
} examples.

But, this does not hold for any consistent learning algorithm but the closure
algorithm.

The Closure Algorithm essentially returns a hypothesis which is the clo-
sure of the set of positive examples and thus negative examples do not play
a role in determining the output

Examples : For the class of convex sets (which is intersection closed),
the algorithm simply returns the convex hull of the positive examples.

Proposition : The hypothesis generated by the closure algorithm clas-
sifies all negative examples correctly.

Proposition : Let C be some intersection closed concept class. If C
satisfies k of given examples x1, x2, ..., x2m incorrectly then they are in ∪ki=1Si

Lemma: Let C ⊆ 2X be a well, behaved, intersection closed concept class
of VC dimension d, P a probability distribution on X and C ∈ C. Then for
all ε ≥ 0 and for all m ≥ 2

ε
, given m independent random examples labeled by

C and drawn according to P, the probability that the hypothesis h generated
by the closure algorithm has error erC,P (h) > ε is at most 2

∑m
k=p 2−k

(
kd
≤d

)
where p = εm/2.

4. Bound for Classes with additional properties

Theorem : If d ≥ 10 and m ≥ max{16
ε
d log d, 6

ε
log 7

δ
}, then

2
∑m

k=p 2−k
(
kd
≤d

)
< δ where p = εm/2. An optimal PAC bound for intersection

closed classes with homogeneous spans: For these classes, one can actually
obtain Ø(1

ε
(d + log 1

δ
)) which matches the lower bound by Ehrenfeucht et

al.,1989.

Definition : An intersection-closed concept class C ⊆ 2X of VC-dimension
d is said to have homogeneous spans S if one can assign to each finite
Y ⊆ C ∈ C a (not necessarily minimal) spanning set S(Y ) of size at most
d, such that for all Y ⊆ X and all x ∈ S(Y ): S(Y )\x ⊆ S(Y \x).
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Proposition: Let C ⊆ 2X be an intersection-closed concept class C ⊆ 2X

with homogeneous spans. Then for all finite Y ⊆ X and all Z ⊆ S(Y ) :
S(Y )\Z ⊆ S(Y \Z).

Theorem: Let C be a well-behaved, intersection-closed concept class of
VC-dimension d. If C has homogeneous spans, then it is PAC learnable from
m = Ø(1

ε
(d+ log 1

δ
))

Theorem:Let X be an arbitrary set and CX,d the class of all subsets of
X of size at most d. Furthermore, let A be an algorithm that chooses as
its hypothesis not the smallest concept consistent with the given examples
(as the closure algorithm does), but an arbitrarily selected largest consistent
concept. Then A needs Ω( e

ε
(d+ log 1

δ
))examples to learn CX,d .

5. Conclusion

The major direction to be explored in the future is to get rid of the homo-
geneous span restriction and finding similar results for general intersection
closed concept classes. As the authors acknowledge, this is far from trivial
and combinatorial properties of such classes need to be further explored.
The main takeaway from this paper is twofold: A new PAC bound for ar-
bitrary intersection closed concept classes and a proof of the optimal bound
for intersection closed classes with homogeneous spans.
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